Voronoi diagrams, quasi-triangulations, and beta-complexes for disks in R2: the theory and implementation in BetaConcept
نویسندگان
چکیده
Voronoi diagrams are powerful for solving spatial problems among particles and have been used in many disciplines of science and engineering. In particular, the Voronoi diagram of three-dimensional spheres, also called the additively-weighted Voronoi diagram, has proven its powerful capabilities for solving the spatial reasoning problems for the arrangement of atoms in both molecular biology and material sciences. In order to solve application problems, the dual structure, called the quasi-triangulation, and its derivative structure, called the beta-complex, are frequently used with the Voronoi diagram itself. However, the Voronoi diagram, the quasi-triangulation, and the beta-complexes are sometimes regarded as somewhat difficult for ordinary users to understand. This paper presents the twodimensional counterparts of their definitions and introduce the BetaConcept program which implements the theory so that users can easily learn the powerful concept and capabilities of these constructs in a plane. The BetaConcept program was implemented in the standard C++ language with MFC and OpenGL and freely available at Voronoi Diagram Research Center (http://voronoi.hanyang.ac.kr).
منابع مشابه
Duality in Disk Induced Flows
We introduce a condition that establishes a duality known from Delaunay triangulations and Voronoi diagrams for diagrams associated with a class of dynamical systems defined via a set of disks in the plane. Under this condition the maximum geometric and worst case algorithmic complexities of the latter diagrams decrease. The condition is natural in the sense that it is automatically fulfilled b...
متن کاملAnisotropic Triangulations via Discrete Riemannian Voronoi Diagrams
The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This struc...
متن کاملHyperbolic Delaunay triangulations and Voronoi diagrams made practical
We show how to compute Delaunay triangulations and Voronoi diagrams of a set of points in hyperbolic space in a very simple way. While the algorithm follows from [7], we elaborate on arithmetic issues, observing that only rational computations are needed. This allows an exact and efficient implementation.
متن کاملMultiple Covers with Balls II: Weighted Averages
Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voro...
متن کاملBregman Voronoi Diagrams: Properties, Algorithms and Applications
The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Design and Engineering
دوره 1 شماره
صفحات -
تاریخ انتشار 2014